Erratum to “Decreased Phosphorylation and Increased Methionine Oxidation of α-Synuclein in the Methionine Sulfoxide Reductase A Knockout Mouse”

نویسندگان

  • Derek B. Oien
  • Gonzalo A. Carrasco
  • Jackob Moskovitz
چکیده

Previously, we have showed that overexpression of methionine-oxidized α-synuclein in methionine sulfoxide reductase A (MsrA) null mutant yeast cells inhibits α-synuclein phosphorylation and increases protein fibrillation. The current studies show that ablation of mouse MsrA gene caused enhanced methionine oxidation of α-synuclein while reducing its own phophorylation levels, especially in the hydrophobic cell-extracted fraction. These data provide supportive evidence that a compromised MsrA function in mammalian brain may cause enhanced pathologies associated with altered α-synuclein oxidation and phosphorylation levels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Site-Specific Interaction between α-Synuclein and Membranes Probed by NMR-Observed Methionine Oxidation Rates

α-Synuclein (αS) is an intrinsically disordered protein that is water-soluble but also can bind negatively charged lipid membranes while adopting an α-helical conformation. Membrane affinity is increased by post-translational N-terminal acetylation, a common modification in all eukaryotic cells. In the presence of lipid vesicles containing a small fraction of peroxidized lipids, the N-terminal ...

متن کامل

MsrB1 (methionine-R-sulfoxide reductase 1) knock-out mice: roles of MsrB1 in redox regulation and identification of a novel selenoprotein form.

Protein oxidation has been linked to accelerated aging and is a contributing factor to many diseases. Methionine residues are particularly susceptible to oxidation, but the resulting mixture of methionine R-sulfoxide (Met-RO) and methionine S-sulfoxide (Met-SO) can be repaired by thioredoxin-dependent enzymes MsrB and MsrA, respectively. Here, we describe a knock-out mouse deficient in selenopr...

متن کامل

Methionine sulfoxide reductase A and a dietary supplement S-methyl-L-cysteine prevent Parkinson's-like symptoms.

Parkinson's disease (PD), a common neurodegenerative disease, is caused by loss of dopaminergic neurons in the substantia nigra. Although the underlying cause of the neuronal loss is unknown, oxidative stress is thought to play a major role in the pathogenesis of PD. The amino acid methionine is readily oxidized to methionine sulfoxide, and its reduction is catalyzed by a family of enzymes call...

متن کامل

Methionine sulfoxide reductase regulates brain catechol-O-methyl transferase activity.

Catechol-O-methyl transferase (COMT) plays a key role in the degradation of brain dopamine (DA). Specifically, low COMT activity results in higher DA levels in the prefrontal cortex (PFC), thereby reducing the vulnerability for attentional and cognitive deficits in both psychotic and healthy individuals. COMT activity is markedly reduced by a non-synonymous single-nucleotide polymorphism (SNP) ...

متن کامل

Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals.

Oxidation of proteins by reactive oxygen species is associated with aging, oxidative stress, and many diseases. Although free and protein-bound methionine residues are particularly sensitive to oxidation to methionine sulfoxide derivatives, these oxidations are readily repaired by the action of methionine sulfoxide reductase (MsrA). To gain a better understanding of the biological roles of MsrA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011